

Catalysis Today 51 (1999) 161-175



Catalytic performance, structure, surface properties and active oxygen species of the fluoride-containing rare earth (alkaline earth)-based catalysts for the oxidative coupling of methane and oxidative dehydrogenation of light alkanes

Hui Lin Wan\*, Xiao Ping Zhou, Wei Zheng Weng, Rui Qiang Long, Zi Sheng Chao, Wei De Zhang, Ming Shu Chen, Ji Zhong Luo, Shui Qin Zhou

State Key Laboratory for Physical Chemistry of Solid Surface, Department of Chemistry and Institute of Physical Chemistry, Xiamen University, Xiamen 361005, China

#### **Abstract**

The fluoride-containing catalysts, mostly of the rare earth (alkaline earth)-based system, demonstrate good catalytic performances for the oxidative coupling of methane and oxidative dehydrogenation of ethane, propane as well as iso-butane. The results of structural analysis of the catalysts for oxidative coupling of methane show that the promoting effects of the fluoride in the catalysts may be principally related to the phase–phase interaction between fluoride and oxide. Compared to the corresponding alkaline earth oxide promoted rare earth oxide catalyst system, an alkaline earth fluoride-promoted rare earth oxide catalyst system is less basic and will therefore be favorable to reduce  $CO_2$  inhibition in the reaction of methane oxidative coupling. However, there is no simple correlation between the acidity/basicity of a methane oxidative coupling catalyst and its catalytic performance. In the experiments of in situ spectroscopic characterizations carried out at the temperature from  $650^{\circ}C$  to  $800^{\circ}C$ ,  $O_2^{-}$  species was detected over five fluoride-containing rare earth (alkaline earth)-based catalysts for methane oxidative coupling reaction, and the reactions between  $O_2^{-}$  species and  $CH_4$  to form  $C_2H_4$  and the corresponding side-products were observed using in situ IR over four catalysts, which suggest that  $O_2^{-}$  is probably the active oxygen species for the methane oxidative coupling reaction over the corresponding catalysts. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Oxidative coupling of methane; Oxidative dehydrogenation of light alkanes; Fluoride-containing rare earth-based catalysts; Oxygen species; Acid-base properties; In situ IR; In situ Raman; TPD

#### 1. Introduction

The oxidative coupling of methane (OCM) to make ethylene and the oxidative dehydrogenation of ethane (ODE) and propane (ODP) to make the corresponding

\*Corresponding author.

olefins are of significance for their potential in effective utilization of natural gas and light alkanes resources. Recently, there have been extensive efforts throughout the world to develop economically feasible catalytic processes for these reactions.

The OCM reaction has been a subject of intensive study since Keller and Bhasin [1] reported their early

work on the reaction in 1982. After more than a decade of study, many catalyst systems have been developed. These include supported transition metal oxide catalyst systems [1–5] partially stabilized with alkali (e.g. MnO<sub>x</sub>-Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub>), reducible non-transition metal oxides catalyst systems [6-11] supported on basic carriers (e.g. PbO<sub>x</sub>/MgO), and alkaline earth oxide (AEO) and/or rare earth oxide (REO)-based irreducible metal oxides (and carbonate), mostly of the hostdopant type catalyst systems [12–31]. Many catalysts in the latter system such as Li<sup>+</sup>/MgO, Na<sup>+</sup>/CaO, Sr<sup>2+</sup>/ La<sub>2</sub>O<sub>3</sub> and ThO<sub>2</sub>-La<sub>2</sub>O<sub>3</sub>-AEO-BaCO<sub>3</sub> have been intensively investigated. These investigations have come up with some general principles for constituent selection and catalyst design of the OCM catalysts. A lot of catalyst systems such as transition metal complex oxide-based catalysts, e.g. MoVNbSbCaO [32] for ODE, and VMgO system [33] for ODP have also been developed. Besides, there are many experimental evidences indicating that the catalytic property of some OCM and ODE catalysts can be significantly improved by chlorine present either in the form of a chloride component built into the catalyst such as Cl<sup>-</sup> promoted Li<sup>+</sup>/MgO or as a volatile chlorinated compound (organic or inorganic) in the reactant feed [34-49].

Drawing inspiration from the promoting effect of Cl<sup>-</sup>, we considered that it would also be interesting and of fundamental significance to have a detailed investigation on the influence of other halides, especially fluorides since alkaline earth or rare earth fluoride is usually more stable than the corresponding chloride under the reaction conditions. Following this clue, we have developed a series of fluoride-containing rare earth-based catalysts, particularly fluoridecontaining rare earth-alkaline earth catalyst systems [50–63] with good catalytic performances for OCM, ODE as well as for ODP reactions. In this review, the catalytic performances of the fluoride-containing catalysts for OCM, ODE, ODP and oxidative dehydrogenation of iso-butane (ODIB) reactions will be reported, with the detailed discussions focused on the nature of structure chemistry of the fluoride-promoted OCM catalysts and the relationship between surface acidity/basicity of the fluoride-containing OCM catalysts and their catalytic properties. The results of in situ spectroscopic characterizations of the active oxygen species such as superoxide  $(O_2^-)$  species and its reactivity over several fluoride-containing catalysts for OCM are also presented.

# 2. Catalytic performances of fluoride-containing rare earth and/or alkaline earth-based catalysts for OCM, ODE, ODP and ODIB reactions

The catalytic performances of a series of alkaline earth fluoride (AEF) promoted REO, oxyfluoride as well as fluoride catalysts are shown in Tables 1-6. The catalysts are SrF<sub>2</sub>/La<sub>2</sub>O<sub>3</sub> or SrO/LaF<sub>3</sub> [51,52] (Table 1), a series of SrF<sub>2</sub>/Ln<sub>2</sub>O<sub>3</sub> (Ln=Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb) [53] (Table 2), BaF2 modified REO (Ce, Pr, Tb) with variable valence [51,54,59,60] (Table 3) and BaF<sub>2</sub>/LaOF catalyst [55,57] (Table 4) for OCM, and BaF<sub>2</sub>/LaF<sub>3</sub> [51,58] (Table 5) and BaF<sub>2</sub>/LaOF [56,57] (Table 6) for ODE. In the BaF<sub>2</sub>/LaF<sub>3</sub> catalysts, LaF<sub>3</sub> is a possible precursor of LaOF and/or La2O3, which can be formed when the catalyst was calcinated at ca. ∼900°C and hydrolyzed slowly even under very low air humidity [64]. Comparing to the corresponding AEO modified REO catalyst system (Table 1), e.g. SrO/La<sub>2</sub>O<sub>3</sub>, the catalysts with fluorides (SrF<sub>2</sub>/La<sub>2</sub>O<sub>3</sub> or SrO/LaF<sub>3</sub>) showed better catalytic performance for the OCM reaction. Similar and more remarkable promotion effects can also be observed from the data in Tables 2 and 3, as well as in the AEF (e.g. BaF<sub>2</sub>) containing transition metal (Ti, Zr) oxide catalysts [61,62]. In the above mentioned fluoride-containing OCM and ODE catalysts, the BaF<sub>2</sub>/LaOF catalysts are prepared based upon the principles of structurally directed constituent selection, i.e. doping the tetragonal LaOF of defective fluorite structure with metal fluoride of lower cationic valence. These catalysts demonstrated good catalytic performance for both the OCM [55,57] and ODE [56,57] reactions. Under the conditions of 770°C and GHSV= $15\,000\,h^{-1}$  with CH<sub>4</sub>/O<sub>2</sub>=6 and 9, CH<sub>4</sub> conversions of 19.5% and 16.5% with C2 selectivities of 81.2% and 84.5% were obtained (Table 4), respectively, over a BaF<sub>2</sub>/9LaOF catalyst. In both cases, the sum of CH<sub>4</sub> conversion and C<sub>2</sub> selectivity was over 100%. Over a BaF<sub>2</sub>/2.33LaOF catalyst and under the conditions of 640°C and GHSV=11600 h<sup>-1</sup> with  $C_2H_6/O_2=2$ ,  $C_2H_6$  conversion of 80.8% with  $C_2H_4$ selectivity of 70.8% could be achieved (Table 6).

Table 1 Catalytic performance for methane oxidative coupling

| Catalyst                                          | Temperature (°C) | Conversion (%)  | Selectivit | y (%)           |          |                               | Yield of C <sub>2</sub> (%) |
|---------------------------------------------------|------------------|-----------------|------------|-----------------|----------|-------------------------------|-----------------------------|
|                                                   |                  | CH <sub>4</sub> | СО         | CO <sub>2</sub> | $C_2H_4$ | C <sub>2</sub> H <sub>6</sub> |                             |
| La <sub>2</sub> O <sub>3</sub>                    | 750              | 27.1            | 15.9       | 53.7            | 19.0     | 11.4                          | 8.2                         |
|                                                   | 700              | 28.4            | 11.7       | 51.4            | 21.5     | 15.4                          | 10.5                        |
|                                                   | 650              | 29.3            | 9.0        | 47.3            | 24.6     | 19.2                          | 12.8                        |
| LaF <sub>3</sub>                                  | 750              | 2.1             | 0          | 46.2            | 0        | 53.8                          | 1.1                         |
| SrO                                               | 750              | 0.9             | 0          | 48.8            | 0        | 51.2                          | 0.5                         |
| SrO/4La <sub>2</sub> O <sub>3</sub>               | 750              | 25.4            | 6.3        | 57.6            | 20.8     | 15.3                          | 9.2                         |
|                                                   | 700              | 27.0            | 3.9        | 50.6            | 25.4     | 20.1                          | 12.3                        |
|                                                   | 650              | 27.3            | 0          | 49.2            | 28.1     | 22.7                          | 13.9                        |
| SrO/La <sub>2</sub> O <sub>3</sub>                | 750              | 29.5            | 7.1        | 44.2            | 29.4     | 19.3                          | 14.4                        |
| 2 0                                               | 700              | 30.2            | 8.2        | 40.9            | 29.2     | 21.7                          | 15.4                        |
| SrO/4LaF <sub>3</sub>                             | 750              | 31.8            | 10.2       | 35.8            | 37.8     | 16.2                          | 17.2                        |
| ,                                                 | 700              | 32.0            | 11.9       | 31.0            | 35.7     | 21.4                          | 18.2                        |
| SrO/LaF <sub>3</sub>                              | 750              | 33.8            | 16.0       | 30.1            | 40.0     | 13.9                          | 18.2                        |
| -                                                 | 700              | 33.7            | 13.6       | 29.7            | 36.2     | 19.4                          | 19.1                        |
| SrF <sub>2</sub> /4La <sub>2</sub> O <sub>3</sub> | 750              | 30.5            | 4.7        | 44.3            | 33.2     | 17.8                          | 15.6                        |
|                                                   | 700              | 32.5            | 4.8        | 40.8            | 34.0     | 20.4                          | 17.7                        |
|                                                   | 650              | 34.7            | 5.7        | 36.8            | 35.8     | 21.7                          | 19.9                        |
| SrF <sub>2</sub> /La <sub>2</sub> O <sub>3</sub>  | 750              | 33.9            | 9.5        | 33.5            | 37.9     | 19.1                          | 19.3                        |
| 2 2 3                                             | 700              | 31.9            | 11.1       | 31.2            | 33.4     | 24.3                          | 18.4                        |

Feed: CH<sub>4</sub>:O<sub>2</sub>=3:1, no dilution gas, GHSV=15 000 h<sup>-1</sup>. The data were obtained after 30 min on stream (adapted from Ref. [52]).

Table 2
The catalytic performance for OCM over the rare earth sesquioxides promoted by strontium fluorides

| Catalyst                                          | Temperature (°C) | Conversion (%)  | Selectiv | ity (%) |        |          |          |       | Yield of $C_2$ (%) |
|---------------------------------------------------|------------------|-----------------|----------|---------|--------|----------|----------|-------|--------------------|
|                                                   |                  | CH <sub>4</sub> | $O_2$    | СО      | $CO_2$ | $C_2H_4$ | $C_2H_6$ | $C_2$ |                    |
| La <sub>2</sub> O <sub>3</sub>                    | 700              | 29.4            | 100      | 10.5    | 52.3   | 21.5     | 15.7     | 37.2  | 10.9               |
| SrF <sub>2</sub> /4La <sub>2</sub> O <sub>3</sub> | 700              | 34.2            | 98.1     | 6.4     | 36.3   | 36.1     | 21.2     | 57.3  | 19.6               |
| $Nd_2O_3$                                         | 750              | 27.2            | 99.1     | 7.2     | 53.5   | 20.1     | 19.2     | 39.3  | 10.7               |
| SrF <sub>2</sub> /Nd <sub>2</sub> O <sub>3</sub>  | 750              | 34.3            | 98.9     | 4.0     | 38.9   | 33.1     | 24.0     | 57.1  | 19.6               |
| $Sm_2O_3$                                         | 800              | 26.3            | 99.2     | 8.9     | 52.3   | 21.6     | 17.2     | 38.8  | 10.2               |
| SrF <sub>2</sub> /Sm <sub>2</sub> O <sub>3</sub>  | 800              | 34.0            | 99.5     | 3.9     | 40.3   | 33.1     | 22.7     | 55.8  | 19.0               |
| $Eu_2O_3$                                         | 750              | 26.3            | 98.4     | 13.8    | 53.1   | 21.8     | 11.3     | 33.1  | 8.7                |
| SrF <sub>2</sub> /Eu <sub>2</sub> O <sub>3</sub>  | 750              | 33.1            | 99.0     | 6.7     | 40.4   | 31.9     | 21.0     | 52.9  | 17.5               |
| $Gd_2O_3$                                         | 750              | 29.5            | 99.7     | 17.5    | 49.0   | 20.1     | 13.4     | 33.5  | 9.9                |
| SrF <sub>2</sub> /Gd <sub>2</sub> O <sub>3</sub>  | 750              | 34.4            | 99.5     | 5.9     | 39.5   | 32.0     | 22.6     | 54.6  | 18.8               |
| $Dy_2O_3$                                         | 750              | 31.3            | 99.5     | 12.4    | 45.0   | 25.0     | 17.6     | 42.6  | 13.3               |
| SrF <sub>2</sub> /Dy <sub>2</sub> O <sub>3</sub>  | 750              | 32.6            | 96.3     | 8.5     | 40.0   | 32.0     | 19.5     | 51.5  | 16.8               |
| $Ho_2O_3$                                         | 750              | 28.8            | 99.3     | 18.2    | 48.8   | 19.9     | 13.1     | 33.0  | 9.5                |
| SrF <sub>2</sub> /Ho <sub>2</sub> O <sub>3</sub>  | 750              | 30.8            | 97.3     | 8.6     | 45.5   | 26.7     | 19.1     | 45.8  | 14.1               |
| $Er_2O_3$                                         | 750              | 27.6            | 99.1     | 13.2    | 52.4   | 20.0     | 14.4     | 34.4  | 9.5                |
| SrF <sub>2</sub> /Er <sub>2</sub> O <sub>3</sub>  | 750              | 29.3            | 96.6     | 10.0    | 47.1   | 23.8     | 19.1     | 42.9  | 12.6               |
| $Tm_2O_3$                                         | 750              | 26.4            | 99.4     | 18.2    | 53.8   | 16.4     | 11.6     | 28.0  | 7.4                |
| SrF <sub>2</sub> /Tm <sub>2</sub> O <sub>3</sub>  | 750              | 28.6            | 99.5     | 8.5     | 51.2   | 21.2     | 19.1     | 40.3  | 11.5               |
| $Yb_2O_3$                                         | 750              | 28.8            | 99.4     | 20.3    | 48.5   | 19.3     | 11.9     | 31.2  | 9.0                |
| SrF <sub>2</sub> /Yb <sub>2</sub> O <sub>3</sub>  | 750              | 28.7            | 99.4     | 12.7    | 51.6   | 19.9     | 15.8     | 35.7  | 10.3               |

Feed: CH<sub>4</sub>:O<sub>2</sub>=3:1, no inert gas for dilution, GHSV=20 000 h<sup>-1</sup>. The data were obtained after 30 min on stream.

Table 3 The catalytic performance for OCM over the reducible rare earth oxides promoted by  ${\bf BaF_2}$ 

| Catalyst                                            | Conversion (%)  | Selectivi | ty (%) |                 |                               |          |                | Yield of C <sub>2</sub> (%) |
|-----------------------------------------------------|-----------------|-----------|--------|-----------------|-------------------------------|----------|----------------|-----------------------------|
|                                                     | $\mathrm{CH}_4$ | $O_2$     | СО     | CO <sub>2</sub> | C <sub>2</sub> H <sub>4</sub> | $C_2H_6$ | C <sub>2</sub> |                             |
| CeO <sub>2</sub>                                    | 22.4            | 99.6      | 21.5   | 75.8            | 1.2                           | 1.6      | 2.8            | 0.6                         |
| 4BaF <sub>2</sub> /CeO <sub>2</sub>                 | 32.3            | 99.5      | 2.2    | 43.2            | 34.2                          | 20.4     | 54.6           | 17. 6                       |
| $Pr_6O_{11}$                                        | 23.1            | 99.5      | 6.9    | 71.5            | 8.2                           | 13.4     | 21.6           | 5.0                         |
| 12BaF <sub>2</sub> /Pr <sub>6</sub> O <sub>11</sub> | 33.5            | 99.4      | 3.7    | 38.8            | 35.3                          | 22.2     | 57.5           | 19.3                        |
| $Tb_4O_7$                                           | 24.2            | 99.5      | 10.0   | 67.1            | 8.5                           | 14.4     | 22.9           | 5.5                         |
| 8BaF <sub>2</sub> /Tb <sub>4</sub> O <sub>7</sub>   | 33.1            | 99.4      | 3.9    | 40.0            | 35.7                          | 20.4     | 56.1           | 18.6                        |

Feed:  $CH_4:O_2=3:1$ , no inert gas for dilution,  $GHSV=20\,000\,h^{-1}$ . The data were obtained after 15 min on stream at  $800^{\circ}C$  (adapted from Ref. [60]).

Table 4 The OCM performance of the  $BaF_2/LaOF$  catalysts with different  $BaF_2$  contents<sup>a</sup>

| Catalyst                             | Conversion of CH <sub>4</sub> (%) | Selectivity | Selectivity (%) |                               |          |                |      |  |  |
|--------------------------------------|-----------------------------------|-------------|-----------------|-------------------------------|----------|----------------|------|--|--|
|                                      |                                   | СО          | CO <sub>2</sub> | C <sub>2</sub> H <sub>4</sub> | $C_2H_6$ | C <sub>2</sub> |      |  |  |
| LaOF                                 | 25.0                              | 12.6        | 40.8            | 27.2                          | 19.4     | 46.6           | 11.7 |  |  |
| BaF <sub>2</sub> /19LaOF             | 26.4                              | 4.7         | 38.6            | 31.9                          | 24.8     | 56.7           | 15.0 |  |  |
| BaF <sub>2</sub> /13.29LaOF          | 26.8                              | 9.0         | 32.7            | 35.5                          | 22.8     | 58.3           | 15.6 |  |  |
| BaF <sub>2</sub> /9LaOF              | 28.7                              | 3.1         | 29.6            | 44.7                          | 22.6     | 67.3           | 19.3 |  |  |
| BaF <sub>2</sub> /9LaOF <sup>b</sup> | 19.5                              | 0           | 18.8            | 41.2                          | 40.0     | 81.2           | 15.8 |  |  |
| BaF <sub>2</sub> /9LaOF <sup>c</sup> | 16.5                              | 0           | 15.5            | 23.5                          | 61.0     | 84.5           | 13.9 |  |  |
| BaF <sub>2</sub> /5.67LaOF           | 27.9                              | 3.0         | 29.1            | 43.7                          | 24.2     | 67.9           | 18.9 |  |  |
| BaF <sub>2</sub> /4.56LaOF           | 27.4                              | 8.2         | 27.9            | 40.3                          | 23.6     | 63.9           | 17.5 |  |  |
| BaF <sub>2</sub> /4LaOF              | 26.9                              | 9.9         | 27.0            | 41.6                          | 21.5     | 63.1           | 17.0 |  |  |
| BaF <sub>2</sub> /2.33LaOF           | 23.8                              | 12.8        | 28.0            | 39.0                          | 20.2     | 59.2           | 14.1 |  |  |

The data were obtained after 120 min on stream (adapted from Ref. [57]).

On the basis of developing fluoride-containing OCM and ODE catalysts, a type of alkali-promoted fluoride-containing REO-based catalyst with good catalytic performance for ODP was also prepared [51,65] (Table 7). This catalyst system is one of the best catalyst systems reported so far in the literature for

the ODP reaction [65,66]. Under the conditions of 500°C, C<sub>3</sub>H<sub>8</sub>:O<sub>2</sub>:N<sub>2</sub>=4:5:11 and GHSV=6000 h<sup>-1</sup>, we have obtained a propylene yield of 35–36% over 3 wt%Cs<sub>2</sub>O/CeO<sub>2</sub>–CeF<sub>3</sub> and 3 wt%Cs<sub>2</sub>O/2CeO<sub>2</sub>–CeF<sub>3</sub> catalysts, much higher than the propylene yield over the VMgO system under similar conditions [67].

Table 5 Catalytic performance of LaF<sub>3</sub>-BaF<sub>2</sub> catalysts for ODE at 470°C

| Catalyst                            | C <sub>2</sub> H <sub>6</sub> conversion (%) | Content | of product | (%)             | C <sub>2</sub> H <sub>4</sub> selectivity | C <sub>2</sub> H <sub>4</sub> yield (%) |      |      |
|-------------------------------------|----------------------------------------------|---------|------------|-----------------|-------------------------------------------|-----------------------------------------|------|------|
|                                     |                                              | СО      | $CO_2$     | $\mathrm{CH}_4$ | $C_2H_4$                                  | $C_2H_6$                                |      |      |
| LaF <sub>3</sub> /4BaF <sub>2</sub> | 46.3                                         | 0       | 0.20       | 0.43            | 3.93                                      | 4.92                                    | 92.7 | 42.9 |
| LaF <sub>3</sub> /BaF <sub>2</sub>  | 46.8                                         | 0       | 0.17       | 0.71            | 4.01                                      | 5.05                                    | 90.2 | 42.2 |
| 4LaF <sub>3</sub> /BaF <sub>2</sub> | 54.2                                         | 0.42    | 0.25       | 0.87            | 4.05                                      | 4.08                                    | 84.0 | 45.5 |

 $Feed = C_2H_6: O_2: N_2 = 10:5:85, \ GHSV = 18\,000\ h^{-1}. \ The \ data \ were \ obtained \ after \ 30 \ min \ on \ stream \ (adapted \ from \ Ref. \ [51]).$ 

<sup>&</sup>lt;sup>a</sup> Reaction conditions: feed=CH<sub>4</sub>: $O_2$ =4:1, temperature=780°C, GHSV=15000 h<sup>-1</sup>.

<sup>&</sup>lt;sup>b</sup> Reaction conditions: feed=CH<sub>4</sub>:O<sub>2</sub>=6:1, temperature=770°C.

<sup>&</sup>lt;sup>c</sup> Reaction conditions: feed=CH<sub>4</sub>:O<sub>2</sub>=9:1, temperature=770°C.

Table 6
The ODE performance of BaF<sub>2</sub>/LaOF catalysts with different BaF<sub>2</sub> contents<sup>a</sup>

| Catalyst                                | Temperature (%) | $X_{O_2} (\%)^{b}$ | Conversion of C <sub>2</sub> H <sub>6</sub> (%) | Selectivi |                 | Yield of        |                               |                                   |
|-----------------------------------------|-----------------|--------------------|-------------------------------------------------|-----------|-----------------|-----------------|-------------------------------|-----------------------------------|
|                                         |                 |                    |                                                 | СО        | CH <sub>4</sub> | CO <sub>2</sub> | C <sub>2</sub> H <sub>4</sub> | C <sub>2</sub> H <sub>4</sub> (%) |
| Quartz sand                             | 700             | 31.7               | 3.0                                             | 0         | 0               | 25.8            | 74.2                          | 2.2                               |
|                                         | 720             | 30.2               | 5.2                                             | 0         | 0               | 20.7            | 79.3                          | 4.1                               |
| LaOF                                    | 660             | 0                  | 44.6                                            | 13.3      | 4.0             | 24.2            | 58.5                          | 26.1                              |
| BaF <sub>2</sub> /15.67LaOF             | 660             | 0                  | 54.7                                            | 10.3      | 3.6             | 17.1            | 69.0                          | 37.7                              |
| BaF <sub>2</sub> /11.5LaOF              | 660             | 0                  | 55.2                                            | 2.9       | 3.8             | 19.3            | 74.0                          | 40.8                              |
| BaF <sub>2</sub> /9LaOF                 | 660             | 0                  | 57.8                                            | 8.4       | 4.3             | 17.6            | 70.7                          | 40.9                              |
| BaF <sub>2</sub> /9LaOF <sup>c</sup>    | 660             | 0                  | 75.5                                            | 11.8      | 8.6             | 12.7            | 66.9                          | 50.5                              |
| BaF <sub>2</sub> /7.33LaOF              | 660             | 0                  | 50.2                                            | 8.1       | 3.1             | 20.3            | 68.5                          | 34.4                              |
| BaF <sub>2</sub> /6.14LaOF              | 680             | 0                  | 53.4                                            | 9.8       | 3.6             | 19.7            | 66.9                          | 35.7                              |
| BaF <sub>2</sub> /2.85LaOF              | 660             | 0                  | 52.4                                            | 9.3       | 3.5             | 20.8            | 66.4                          | 34.8                              |
| BaF <sub>2</sub> /2.33LaOF              | 660             | 0                  | 46.2                                            | 8.0       | 3.5             | 24.5            | 64.0                          | 29.6                              |
| BaF <sub>2</sub> /2.33LaOF <sup>d</sup> | 640             | 0                  | 80.8                                            | 8.7       | 8.8             | 11.7            | 70.8                          | 57.2                              |

The data were obtained after 120 min on stream (adapted from Ref. [57]).

For the reaction of ODIB, the CeF<sub>3</sub> modified rare earth sesquioxide catalysts also show satisfactory catalytic performance [68] (Table 8). However, under the same reaction conditions, the conversion of ODIB reaction is lower than that of the ODP reaction over the same catalysts (Table 9). This phenomenon may have resulted from that the abstractions of the hydrogen atoms bonded to the tertiary carbon of iso-butane and of those bonded to the secondary carbon of propane may be the rate-limiting steps, respectively, for the alkanes activation, and thus the iso-butane molecule with larger steric hindrance will be more difficult than the smaller propane molecule to make the active sites of the catalyst accessible, in spite of the fact that the

corresponding C–H bond energy of iso-butane ( $\sim$ 91 kcal/mol) is smaller than that of propane ( $\sim$ 95 kcal/mol).

## 3. Structure aspects of the fluoride-promoted catalyst and the principal nature of the promoting effects of fluoride

X-ray diffraction (XRD) experiments have detected the formation of new phases in more than 10 fluoridecontaining rare earth–alkaline earth as well as alkaline earth–transition metal oxide-based catalyst systems. For example, SrF<sub>2</sub> and the LaOF phases with tetra-

Table 7
Catalytic performance of catalysts for oxidative dehydrogenation of propane at 500°C

| Catalyst                                                   | C <sub>3</sub> H <sub>8</sub> conversion (%) | Selectiv | ity (%)         |          |          |        |      | C <sub>3</sub> H <sub>6</sub> yield (%) |
|------------------------------------------------------------|----------------------------------------------|----------|-----------------|----------|----------|--------|------|-----------------------------------------|
|                                                            |                                              | $C_3H_6$ | CH <sub>4</sub> | $C_2H_6$ | $C_2H_4$ | $CO_2$ | CO   |                                         |
| CeO <sub>2</sub>                                           | 86.7                                         | 7.9      | 39.8            | 3.1      | 23.9     | 17.8   | 7.0  | 6.85                                    |
| CeO <sub>2</sub> -2CeF <sub>3</sub>                        | 10.3                                         | 72.7     | 0               | 0        | 0        | 13.2   | 14.0 | 7.49                                    |
| 3 wt%Cs <sub>2</sub> O/2CeO <sub>2</sub> -CeF <sub>3</sub> | 53.4                                         | 67.5     | 3.5             | 0        | 12.2     | 1.3    | 3.4  | 36.0                                    |
| 3 wt%Cs <sub>2</sub> O/CeO <sub>2</sub> -CeF <sub>3</sub>  | 47.5                                         | 74.6     | 3.4             | 0        | 16.5     | 0.5    | 5.0  | 35.4                                    |
| 3 wt%Cs <sub>2</sub> O/CeO <sub>2</sub> -2CeF <sub>3</sub> | 41.3                                         | 81.1     | 3.8             | 0        | 10.7     | 0.8    | 3.6  | 33.5                                    |
| 3 wt%Cs <sub>2</sub> O/CeO <sub>2</sub> -3CeF <sub>3</sub> | 7.7                                          | 84.4     | 0               | 0        | 0        | 0      | 11.6 | 6.50                                    |

 $Feed=C_3H_8:O_2:N_2=4:5:11$ ,  $GHSV=6000\ h^{-1}$ . The data were obtained after 120 min on stream (adapted from Ref. [51]).

<sup>&</sup>lt;sup>a</sup> Reaction conditions: feed= $C_2H_6$ : $O_2$ =67.7:32.3; GHSV=2700 h<sup>-1</sup>.

 $<sup>^{\</sup>rm b}$   $X_{{\rm O}_2}$ =the molar percentage of  ${\rm O}_2$  in the effluent.

c GHSV=6000 h<sup>-1</sup>.

d GHSV=11600 h<sup>-1</sup>.

Table 8 Catalytic performance of catalyst for oxidative dehydrogenation of iso-butane at 500°C

| Catalyst                                          | Conversion of iso-butane (%) | Selectivity                     | (%)                           | Yield of iso-butane (%) |                    |      |
|---------------------------------------------------|------------------------------|---------------------------------|-------------------------------|-------------------------|--------------------|------|
|                                                   |                              | i-C <sub>4</sub> H <sub>8</sub> | C <sub>3</sub> H <sub>6</sub> | $C_2H_4$                | CO+CO <sub>2</sub> |      |
| Nd <sub>2</sub> O <sub>3</sub> /2CeF <sub>3</sub> | 14.6                         | 74.9                            | 0.42                          | 19.3                    | 5.4                | 10.9 |
| Sm <sub>2</sub> O <sub>3</sub> /2CeF <sub>3</sub> | 13.5                         | 77.0                            | 0.35                          | 17.9                    | 4.8                | 10.4 |
| La <sub>2</sub> O <sub>3</sub> /2CeF <sub>3</sub> | 14.2                         | 68.0                            | 0                             | 14.4                    | 17.6               | 9.64 |
| Y <sub>2</sub> O <sub>3</sub> /2CeF <sub>3</sub>  | 15.4                         | 71.3                            | 0.45                          | 18.8                    | 9.5                | 10.9 |

Feed=i-C<sub>4</sub>H<sub>10</sub>:O<sub>2</sub>=1:1, GHSV=6000 h<sup>-1</sup>. The data were obtained after 120 min on stream (adapted from Ref. [51]).

Table 9

Comparison of the catalytic performance of rare earth-based catalysts for the oxidative dehydrogenation of propane and iso-butane

| Catalyst                                          | Conversion (%)                   | Selectivity                     | Selectivity (%) |          |      |                 |                                 |  |  |
|---------------------------------------------------|----------------------------------|---------------------------------|-----------------|----------|------|-----------------|---------------------------------|--|--|
|                                                   | $C_3H_8$                         | $C_3H_6$                        | CH <sub>4</sub> | $C_2H_4$ | СО   | CO <sub>2</sub> | $C_3H_6$                        |  |  |
| Sm <sub>2</sub> O <sub>3</sub> /4CeF <sub>3</sub> | 7.5                              | 92.8                            | 0               | 0        | 0    | 7.2             | 6.96                            |  |  |
| Nd <sub>2</sub> O <sub>3</sub> /4CeF <sub>3</sub> | 8.8                              | 99.0                            | 0               | 0        | 0    | 1.0             | 8.71                            |  |  |
| Y <sub>2</sub> O <sub>3</sub> /4CeF <sub>3</sub>  | 9.0                              | 97.0                            | 0               | 0        | 0    | 3.0             | 8.7.                            |  |  |
|                                                   | i-C <sub>4</sub> H <sub>10</sub> | i-C <sub>4</sub> H <sub>8</sub> | CH <sub>4</sub> | $C_3H_6$ | СО   | CO <sub>2</sub> | i-C <sub>4</sub> H <sub>8</sub> |  |  |
| Sm <sub>2</sub> O <sub>3</sub> /4CeF <sub>3</sub> | 5.61                             | 84.7                            | 2.53            | 6.60     | 2.87 | 4.75            | 3.48                            |  |  |
| Nd <sub>2</sub> O <sub>3</sub> /4CeF <sub>3</sub> | 4.31                             | 87.9                            | 1.45            | 6.27     | 1.50 | 2.87            | 3.79                            |  |  |
| Y <sub>2</sub> O <sub>3</sub> /4CeF <sub>3</sub>  | 6.41                             | 78.6                            | 3.96            | 14.4     | 1.50 | 1.54            | 5.04                            |  |  |

Reaction temperature=500°C, feed=alkane:O<sub>2</sub>:N<sub>2</sub>=2:3:5, GHSV=6000 h<sup>-1</sup>. The data were obtained after 120 min on stream.

gonal (tetragonal LnOF is a non-stoichiometric compound and can be expressed by the formula  $\text{LnO}_xF_{3-2x}$ ; the ideal unit cell composition with x being 0.75 is  $\text{Ln}_4\text{O}_3F_6$ ), rhombohedral and cubic structures were detected in a SrO–LaF $_3$  catalyst [52] (Table 10). Tetragonal and rhombohedral NdOF [53], tetragonal  $\text{Gd}_4\text{O}_3F_6$  (Table 10), as well as  $\text{BaTiOF}_4$  and orthorhombic  $\text{Ba}_3\text{Ti}_2\text{O}_2F_{10}$  [61] phases were also detected, respectively, in the corresponding

SrF<sub>2</sub>/Nd<sub>2</sub>O<sub>3</sub>, AEF (Ca, Sr, Ba) modified gadolinium oxide and BaF<sub>2</sub>/TiO<sub>2</sub> catalyst systems. In general, the lanthanide oxyfluorides (LnOF) were found to be one of the main component in many catalysts [51–53]. For some catalysts, such as BaF<sub>2</sub>–CeO<sub>2</sub>, only the original phases (i.e. BaF<sub>2</sub> and CeO<sub>2</sub>) were detected by XRD. Compared to the lattice parameters of the pure BaF<sub>2</sub> and CeO<sub>2</sub>, in the BaF<sub>2</sub>/CeO<sub>2</sub> catalyst, however, the lattice of BaF<sub>2</sub> phase was slightly contracted while

Table 10 Results of XRD analysis of SrO/LaF $_3$  and AEF/Gd $_2$ O $_3$  catalysts

| Catalyst                                          | Composition and structure <sup>a</sup>                                                                                               |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| SrO/4LaF <sub>3</sub>                             | Tetragonal LaOF (s, a=4.091, c=5.837); cubic SrF <sub>2</sub> (w, a=5.800); LaF <sub>3</sub> (w)                                     |
| SrO/2LaF <sub>3</sub>                             | Rhombohedral LaOF (m, a=7.131, b=32.010); tetragonal LaOF (s); SrF <sub>2</sub> (m); LaF <sub>3</sub>                                |
| 1.22SrO/LaF <sub>3</sub>                          | $SrF_2$ (s); tetragonal LaOF (s); cubic LaOF (m, $a=5.76$ )                                                                          |
| CaF <sub>2</sub> /2Gd <sub>2</sub> O <sub>3</sub> | Cubic $Gd_2O_3$ (vs. $a=10.81$ ); cubic $CaF_2$ (w, $a=5.46$ ); tetragonal $Gd_4O_3F_6$ (vw. $a=5.60$ , $c=5.50$ )                   |
| CaF <sub>2</sub> /Gd <sub>2</sub> O <sub>3</sub>  | Cubic Gd <sub>2</sub> O <sub>3</sub> (vs); cubic CaF <sub>2</sub> (m); tetragonal Gd <sub>4</sub> O <sub>3</sub> F <sub>6</sub> (vw) |
| 4CaF <sub>2</sub> /Gd <sub>2</sub> O <sub>3</sub> | Cubic Gd <sub>2</sub> O <sub>3</sub> (vs); cubic CaF <sub>2</sub> (vs); tetragonal Gd <sub>4</sub> O <sub>3</sub> F <sub>6</sub> (w) |
| 4SrF <sub>2</sub> /Gd <sub>2</sub> O <sub>3</sub> | Cubic $Gd_2O_3$ (vs); cubic $SrF_2$ (vs, $a=5.80$ ); tetragonal $Gd_4O_3F_6$ (w)                                                     |
| $4BaF_2/Gd_2O_3$                                  | Cubic $Gd_2O_3$ (vs); cubic $BaF_2$ (vs, $a=6.20$ ); tetragonal $Gd_4O_3F_6$ (vw)                                                    |

<sup>&</sup>lt;sup>a</sup> vs=very strong; s=strong; m=medium; w=weak; vw=very weak.

Table 11 Calculation results of lattice expansion and contraction for the BaF<sub>2</sub>/CeO<sub>2</sub> catalysts

| Catalyst                            | Lattice                  |                          |  |  |  |  |  |
|-------------------------------------|--------------------------|--------------------------|--|--|--|--|--|
|                                     | CeO <sub>2 (Cubic)</sub> | BaF <sub>2 (Cubic)</sub> |  |  |  |  |  |
| BaF <sub>2</sub> /CeO <sub>2</sub>  | a=b=c=5.412              | a=b=c=6.147(5)           |  |  |  |  |  |
| 2BaF <sub>2</sub> /CeO <sub>2</sub> | a=b=c=5.422              | a=b=c=6.15601(1)         |  |  |  |  |  |
| 3BaF <sub>2</sub> /CeO <sub>2</sub> | a=b=c=5.438-5.432        | a=b=c=6.1688-6.192       |  |  |  |  |  |
| 4BaF <sub>2</sub> /CeO <sub>2</sub> | a=b=c=5.431-5.430        | a=b=c=6.154-6.158        |  |  |  |  |  |
| 5BaF <sub>2</sub> /CeO <sub>2</sub> | a=b=c=5.428-5.430        | a=b=c=6.169-6.160        |  |  |  |  |  |
| Pure sample                         | a=b=c=5.4112             | a=b=c=6.2001             |  |  |  |  |  |

that of CeO<sub>2</sub> was slightly expanded (Table 11) [51,54,59]. These results indicated that partially anionic (O<sup>2-</sup>/F<sup>-</sup>) and possibly cationic (e.g. Ba<sup>2+</sup>/Ce<sup>4+</sup>) exchanges between the oxide and fluoride phases took place in the catalysts. As a result of ionic exchanges between the oxide and fluoride phases, new phases such as oxyfluorides, and lattice defects such as anionic vacancies (e.g. in the case of substituting O<sup>2-</sup> for F<sup>-</sup> and/or cation with lower valence for cation with higher valence) were formed. It should also be pointed out that the rare earth oxyfluoride (REOF) compound is an ionic conductor with superstructure of fluorite and may contain intrinsic anionic Frenkel defects and anionic vacancies [69]. The presence of anionic vacancies in the oxide or oxyfluoride with stable cation valence may provide suitable sites available for oxygen adsorption, while a catalyst with more anionic vacancies and high anion mobility will be favorable for the migration of surface OH<sup>-</sup> group formed by the reaction of the surface active oxygen species with the hydrogen atom of CH<sub>4</sub> molecule to another surface OH<sup>-</sup> site, and then elimination as H<sub>2</sub>O to regenerate the anionic vacancy.

From the data shown in Table 2, it is interesting to have found that the C<sub>2</sub> yield of SrF<sub>2</sub> promoted Ln<sub>2</sub>O<sub>3</sub> catalysts decreased roughly with the increase of atomic number of Ln in the periodic table, i.e. La, Nd>Sm>Eu, Gd>Dy>Ho>Er>Tm>Yb, which is consistent with the successive decrease of the conductivity of rare earth sesquioxides [70]. Since the OCM reaction usually performed at the temperature above 650°C, the cations and/or anions in the oxides may become substantially mobile and the ionic conductivity becomes an important component for the conductivity [69]. This implies that the mobility of lattice

oxygen for  $Ln_2O_3$  at high temperature may also decrease in the same sequence. If the amount of LnOF formed (detected by the XRD) in the  $SrF_2/Ln_2O_3$  catalysts is used as a criterion to measure the extent of  $F^-$  and  $O^{2-}$  exchange between the  $SrF_2$  and  $Ln_2O_3$  phases, it can be found that the extent of anionic exchange between the fluoride and oxide phases also decrease with the increase of atomic number of Ln in the periodic table. So the difference in the promotion effect of  $SrF_2$  on  $Ln_2O_3$  may be explained by the extent of interaction or ionic exchange between the  $SrF_2$  and  $Ln_2O_3$  phases. It seems that the interaction or ionic exchange between the fluoride and oxide is favored for the  $Ln_2O_3$  with higher lattice oxygen mobility.

For the BaF<sub>2</sub> promoted CeO<sub>2</sub>, Tb<sub>4</sub>O<sub>7</sub> and Pr<sub>6</sub>O<sub>11</sub>, the C<sub>2</sub> yield of the catalysts (4BaF<sub>2</sub>/CeO<sub>2</sub><8BaF<sub>2</sub>/ Tb<sub>4</sub>O<sub>7</sub><12BaF<sub>2</sub>/Pr<sub>6</sub>O<sub>11</sub>) and high temperature conductivity of the three REOs (CeO<sub>2</sub><Tb<sub>4</sub>O<sub>7</sub><Pr<sub>6</sub>O<sub>11</sub>) [71] also follow the same sequence, which is consistent with the extent of anionic exchange between BaF2 and REOs. In the XRD profiles of the three catalysts, small amount of TbOF and relatively large amount of PrOF were detected in the 8BaF<sub>2</sub>/Tb<sub>4</sub>O<sub>7</sub> and 12BaF<sub>2</sub>/Pr<sub>6</sub>O<sub>11</sub> samples, respectively, while no CeOF was detected in 4BaF<sub>2</sub>/CeO<sub>2</sub>. The relative concentration of Ln<sup>4+</sup> ions, which have a strong oxidation ability, on the catalyst's surface also decreased with the increase of high temperature conductivity of the three REOs [60]. These results indicate that the promotion effects of AEF in the REO-based catalysts may be principally related to the extent of phase-phase interaction between fluoride and oxide.

#### 4. Surface acidity/basicity of the fluoridecontaining catalyst and their relationship with catalytic property

Many OCM catalysts contain oxides with basic properties such as the oxide of alkali metals, alkaline earth metals and some lanthanides. Therefore, a parallel relationship between catalyst basicity and OCM performance has been suggested [19,72–76]. For some catalyst systems, such a correlation does exist. However, it is now evidenced that a good OCM catalyst need not to be strongly basic, and the relationship between the acidity/basicity and catalytic properties is

complex [47,50-52,57,61,77,78]. For the fluoridecontaining REO-AEO-based catalyst system, since the electronegativity of F or the work function of the fluorides is larger than that of O or the oxides, respectively, the presence of F may be helpful to decrease the electron donating ability of the catalyst. As a result, a fluoride-containing catalyst will be more favorable than the oxide catalyst to adsorb oxygen in the form of deficiency in electron [51] such as  $O_2^-$ . Besides, an AEF/REO catalyst with better OCM performance will be less basic than the corresponding AEO/REO catalyst, which can be sensed by the comparison of CO<sub>2</sub>-TPD (temperature-programmed desorption) profiles of BaO/La<sub>2</sub>O<sub>3</sub> and BaF<sub>2</sub>/La<sub>2</sub>O<sub>3</sub> catalysts shown below. Thus an AEF/REO catalyst will be more favorable than the corresponding AEO/ REO catalyst to prevent inhibition of CO<sub>2</sub> and to decrease the ignition temperature for the OCM and ODE reactions [51]. These ideas are quite different from the opinion that a good OCM catalyst has to have strong basicity [72-76], but consistent with Lunsford's comments about the influence of Cl on the basicity and carbonate formation of the Li<sup>+</sup>/MgO system [45–47].

The modification effects of fluoride on the surface oxygen species and acid/base properties of the OCM catalysts have been proved by the XPS (X-ray photoelectron spectroscopy), DRUV (diffuse reflectance ultraviolet) spectra of adsorbed pyridine (Py), CO<sub>2</sub>-

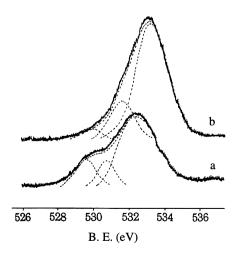



Fig. 1. O1s XPS of O<sub>2</sub>-adsorbed (a) SrO/La<sub>2</sub>O<sub>3</sub> and (b) SrF<sub>2</sub>La<sub>2</sub>O<sub>3</sub> (adapted from Ref. [52]).

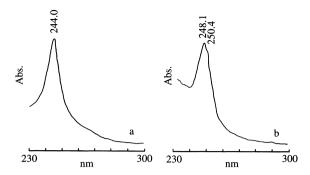



Fig. 2. Diffuse reflectance UV spectra of pyridine adsorbed catalysts: (a)  $SrO/La_2O_3$ ; (b)  $SrF_2/La_2O_3$  (adapted from Ref. [52]).

TPD, and IR (infrared) experiments. XPS experiments (Fig. 1) revealed that, compared to the AEO promoted REO such as SrO/La<sub>2</sub>O<sub>3</sub>, the surface of an AEF/REO, e.g. SrF<sub>2</sub>/La<sub>2</sub>O<sub>3</sub>, contained more oxygen species with higher binding energy or less negative charge [52,54]. The DRUV spectra of adsorbed pyridine [52] (Fig. 2) and CO<sub>2</sub>-TPD (Fig. 3) profiles showed that the surface acidity of a SrF<sub>2</sub>/La<sub>2</sub>O<sub>3</sub> catalyst, which has better OCM performance than a SrO/La<sub>2</sub>O<sub>3</sub>, was relatively stronger than that of a SrO/La<sub>2</sub>O<sub>3</sub> catalyst. In other words, the SrF<sub>2</sub>/La<sub>2</sub>O<sub>3</sub> catalyst was less basic than the SrO/La<sub>2</sub>O<sub>3</sub> catalyst.

The IR spectra of adsorbed  $CO_2$  from  $50^{\circ}C$  to  $750^{\circ}C$  recorded over a  $BaF_2/5.67LaOF$  catalyst with good catalytic performance for OCM and ODE are shown in Fig. 4. Before taking the IR spectra, the samples were exposed to 1 atm of  $CO_2$  at a chosen temperature for 5 min followed by evacuation to  $10^{-3}$  Torr for 15 min. The results showed that the amount of carbonate in the catalyst first increased with the increase of adsorption temperature, and reached a maximum at about  $450^{\circ}C$ . With further

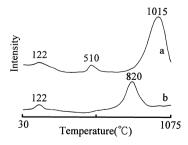



Fig. 3. TPD spectra of  $CO_2$ -adsorbed (a)  $SrO/La_2O_3$  and (b)  $SrF_2/La_2O_3$  catalyst.

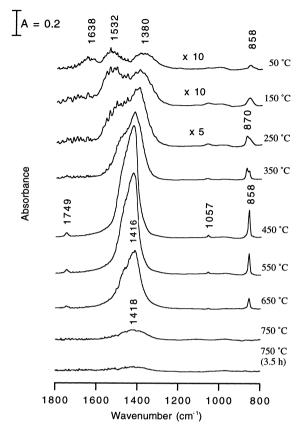



Fig. 4. In situ FTIR spectra of  $CO_2$  adsorption over  $BaF_2/5.67LaOF$  sample at various temperatures. (Before taking the spectra, the sample was first exposed to 1 atm of  $CO_2$  at the indicated temperature for 5 min followed by evacuation at the same temperature for 15 min.)

increase of adsorption temperature, the amount of carbonate in the catalyst gradually decreased. As the temperature reached 750°C, there was only a small amount of carbonate remaining in the catalyst. These results provided another experimental evidence which indicated that CO<sub>2</sub> poisoning on the BaF<sub>2</sub>/LaOF catalyst under OCM condition was almost negligible.

However, for the pure REO or REOF and the AEF promoted REO or REOF catalysts, the relationship between acid/base properties of the catalysts and their OCM performance is very complicated. As can be seen from the Py-TPD spectra of  $Y_2O_3$  and  $2SrF_2/Y_2O_3$  catalysts (Fig. 5) [79], the  $2SrF_2/Y_2O_3$  was less acidic than  $Y_2O_3$ , and from the  $CO_2$ -TPD spectra of  $La_2O_3$ , LaOF,  $BaF_2/2.33La_2O_3$  and  $BaF_2/5.67LaOF$  (Fig. 6), the basicity of  $BaF_2/5.67LaOF$  was stronger

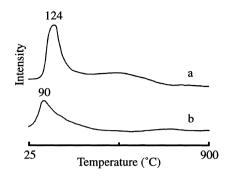



Fig. 5. TPD spectra of Py-adsorbed on (a)  $Y_2O_3$  and (b)  $2SrF_2/Y_2O_3$  catalysts (adapted from Ref. [79]).

than that of the LaOF, while the BaF<sub>2</sub>/2.33La<sub>2</sub>O<sub>3</sub> was less basic than La<sub>2</sub>O<sub>3</sub>. Similar results can also be observed in the CO<sub>2</sub>-TPD spectra of the REO with variable valence (CeO<sub>2</sub>, Pr<sub>6</sub>O<sub>11</sub> and Tb<sub>4</sub>O<sub>7</sub>) and the

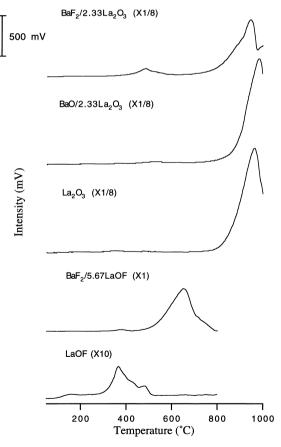



Fig. 6. CO<sub>2</sub>-TPD spectra of the catalysts.

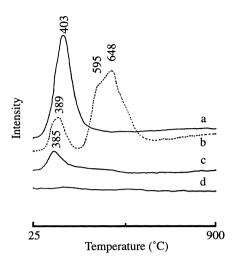



Fig. 7.  $CO_2$ -TPD spectra of (a)  $CeO_2$ , (b)  $Pr_6O_{11}$ , (c)  $Tb_4O_7$  and (d)  $4BaF_2/CeO_2$ ,  $12BaF_2/Pr_6O_{11}$ ,  $8BaF_2/Tb_4O_7$  (adapted from Ref. [60]).

 $BaF_2$  promoted  $CeO_2$ ,  $Pr_6O_{11}$  and  $Tb_4O_7$  catalysts (Fig. 7), the catalysts with less basic property demonstrate better OCM performance. These results again indicated that there is no simple correlation between acidity/basicity of an OCM catalyst and its OCM performance.

For an oxide or complex oxide catalyst with stable cation valence, its Lewis basicity, or p-type conductivity, or electron donating ability of lattice oxygen is parallel to its ability of adsorbing and activating oxygen, and to its catalytic activity. However, during the OCM and ODE processes, CO2 either generated by the side reaction or added to the feed will react instantly with surface Lewis base sites (even with  $O_2^{2-}$  species) forming surface carbonate, especially for the catalysts promoted with the oxides of strongly basic property such as BaO, SrO and Li<sub>2</sub>O, etc. As a result, the catalyst's ability to adsorb oxygen decreases, while the selectivity improves. Under such circumstances, the activation energy for the reaction increases and the reaction temperature has to be increased in order to maintain a certain activity. For the fluoride-promoted catalyst, besides the anionic vacancies present due to the ionic exchange and/or structurally intrinsic reason, CO2 usually does not seriously affect the activity of the catalyst. The improvement of selectivity of a fluoride-promoted catalyst may be attributed to the existence of surface fluoride which will isolate the active oxygen species, and the fact that a fluoride modified catalyst will be favorable to adsorb oxygen species in the form less rich in electrons such as  $O_2^-$ , which has been known to be much less active than  $O^-$  and  $O_2^{2-}$ .

Besides the complex relationship between the acid/base property of the catalysts and their catalytic performance, it is worth mentioning that the p-type conductivity is also not a requisite attribute for good OCM catalysts. The experiments of photocurrent measurement with LaOF or BaF<sub>2</sub>/9LaOF as working electrode showed that LaOF was a solid electrolyte with "p-type" conductivity. After modifying with 10 mol% of BaF<sub>2</sub>, the conductivity of sample BaF<sub>2</sub>/9LaOF changed to "n-type" [57]. But for the OCM reaction, BaF<sub>2</sub>/9LaOF is a much better catalyst than LaOF (Table 4).

### 5. Spectroscopic characterization of active oxygen species for OCM

Much attention has been focused on the nature of the active and C<sub>2</sub>-selective oxygen species for the OCM reaction. A knowledge of which may help in the search for a better OCM catalyst. For an OCM reaction performed on an oxide or oxyfluoride catalyst with stable cation valence, mono and diatomic anionic species such as  $O^-$ , or  $O_2^{2-}$ ,  $O_2^-$  and surface lattice oxygen at low coordination sites have been proposed to be the active oxygen species for the reaction, based on both ex situ and in situ experimental evidences obtained from techniques such as EPR (electron paramagnetic resonance), XPS, IR and Raman spectroscopies [21,48,52,54,57,78,80–84]. Unfortunately, the nature of the oxygen species responsible for the selective conversion of methane to C<sub>2</sub> hydrocarbons has not yet been clarified.

Since 1993, we have been using the in situ IR, Raman and confocal microprobe Raman spectroscopic techniques to characterize oxygen species on SrF<sub>2</sub>/La<sub>2</sub>O<sub>3</sub> [52], SrF<sub>2</sub>/Nd<sub>2</sub>O<sub>3</sub> [85], BaF<sub>2</sub>/CeO<sub>2</sub> [86], LaOF [87] and BaF<sub>2</sub>/LaOF [57,84,87], and catalysts at reaction temperatures. Over the SrF<sub>2</sub>/4La<sub>2</sub>O<sub>3</sub> (Fig. 8), LaOF, BaF<sub>2</sub>/5.67LaOF (Fig. 9), SrF<sub>2</sub>/Nd<sub>2</sub>O<sub>3</sub> (Fig. 10) and 4BaF<sub>2</sub>/CeO<sub>2</sub> (Fig. 11) catalysts, after the samples had been treated with H<sub>2</sub> or evacuated under 10<sup>-3</sup>–10<sup>-4</sup> Torr at 700–750°C followed by exposure to O<sub>2</sub>, we detected a very clear IR peak at about 1100 cm<sup>-1</sup>

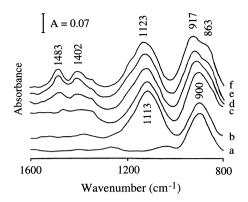



Fig. 8. FTIR spectra of  $SrF_2/4La_2O_3$  catalyst: (a) after treatment with  $H_2$  at  $700^{\circ}C$ , (b)–(f) after exposure to  $O_2$  at  $650^{\circ}C$  followed by cooling down successively under  $O_2$  to  $500^{\circ}C$ ,  $300^{\circ}C$ ,  $100^{\circ}C$  and  $25^{\circ}C$ , respectively (adapted from Ref. [52]).

for the former four catalysts and a Raman peak at  $1172~\rm cm^{-1}$  for  $4BaF_2/CeO_2$ . The IR bands detected are close to the generally known IR band of adsorbed  $O_2^-$  at ca.  $1100~\rm cm^{-1}$ , while the wave number of the Raman band at  $1172~\rm cm^{-1}$  over  $4BaF_2/CeO_2$  is close to that of the IR band of adsorbed  $O_2^-$  at  $1180~\rm cm^{-1}$  reported by Davydov et al. [88] on  $O_2$ -adsorbed  $TiO_2$ . Therefore these bands were assigned to a superoxide species  $(O_2^-)$ . Comparatively, in the Raman experiments performed over some of the alkaline earth–rare earth-based complex oxide (carbonate) catalysts under the similar experimental conditions, the bands of surface  $O_2^-$  are usually very weak and can only be detected on a few catalyst systems under the co-feed

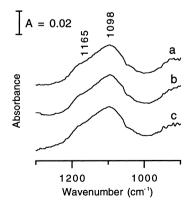



Fig. 9. In situ FTIR spectra of a BaF<sub>2</sub>/5.67LaOF sample after exposure to 1 atm of  $O_2$  at 750°C for (a) 1 and (b) 10 min followed by evacuation at the same temperature for (c) 1 min.

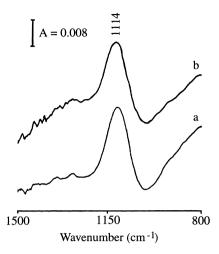



Fig. 10. FTIR spectra of SrF<sub>2</sub>/Nd<sub>2</sub>O<sub>3</sub> at 700 $^{\circ}$ C: (a) After adsorbing O<sub>2</sub>, and (b) followed by purging with He for 15 min.

mode. The possible reason is that the fluoride-containing catalysts have relatively lower electron donating ability, or relatively higher work function, therefore they will be more favorable than the corresponding oxide-based catalysts to adsorb the oxygen in the form of deficiency in electron such as  $O_2^-$ . On the other

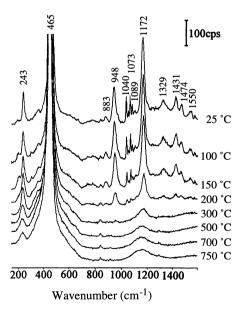



Fig. 11. Microprobe Raman spectra of O<sub>2</sub>-pretreated 4BaF<sub>2</sub>/CeO<sub>2</sub> catalyst at the indicated temperature under He atmosphere (adapted from Ref. [86]).

hand, the fluoride-containing catalysts discussed above usually contain large amount of alkaline earth cations with large ionic radii such as  $Ba^{2+}$  and  $Sr^{2+}$ . Therefore a stronger interaction potential between the single charged superoxide ion and the induced dipole of  $Ba^{2+}$  or  $Sr^{2+}$  may exist. This is also favorable to the stabilization of  $O_2^-$ .

Further IR experiments were carried out to verify the reactivity of assigned O<sub>2</sub> species with CH<sub>4</sub> under OCM temperature. It was found that at 700-750°C, the  $O_2^-$  species on the  $SrF_2/Nd_2O_3$  [85] (Fig. 12), LaOF [87] and BaF<sub>2</sub>/5.67LaOF [87] catalysts can react with  $CH_4$  accompanied by the formation of  $C_2H_4$  (at 949–950 cm<sup>-1</sup> in IR spectroscopy),  $CO_2$ and surface carbonate. Similar results were observed over SrF<sub>2</sub>/La<sub>2</sub>O<sub>3</sub> catalyst. When an oxygen preadsorbed SrF<sub>2</sub>/4La<sub>2</sub>O<sub>3</sub> catalyst was heated at 650°C in a flow of  $CH_4/O_2=3$  for 45 min, the IR band of  $O_2^$ species become weaker and the bands of gas phase C<sub>2</sub>H<sub>4</sub>, CH<sub>4</sub>, CO<sub>2</sub>, adsorbed H<sub>2</sub>O and surface carbonate were observed [52] (Fig. 13). In another experiment, when a BaF<sub>2</sub>/5.67LaOF sample was exposed inside a close sample cell to 1 atm of  $CH_4/O_2=3.4$  at  $800^{\circ}C$ , a weak IR band of  $O_2^-$  at  $1098 \text{ cm}^{-1}$  and the band of surface carbonate at  $850 \text{ cm}^{-1}$  were observed immediately. With the increase of exposure time, the bands of surface carbonate grow continuously, while the band of  $\mathrm{O}_2^-$  increased at the beginning and then decreased, and finally disappeared, probably due to complete consumption of  $O_2$  and removal of  $O_2^-$  by the remaining CH<sub>4</sub>. During all the period, the peak of gas

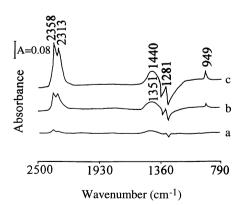



Fig. 12. FTIR spectra recorded during the reaction of  $CH_4$  with  $O_2$ -adsorbed  $SrF_2/Nd_2O_3$  at (referenced to the spectra at about 0 min): (a) 5; (b) 15; (c) 30 min.

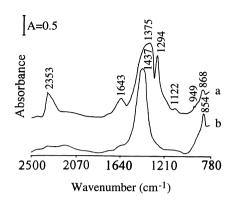



Fig. 13. FTIR spectra of  $O_2$ -adsorbed  $SrF_2/4La_2O_3$ : (a) in  $CH_4/O_2$  (3/1) at 650°C; (b) after purging with He at 650°C (adapted from Ref. [52]).

phase  $C_2H_4$  at 950 cm<sup>-1</sup> kept increasing. When the above catalyst was switched to a flow of  $CH_4/O_2=3.4$  (15 ml/min), the band of  $O_2^-$  was restored gradually (Fig. 14). These results provide direct spectroscopic evidence for the reaction between  $O_2^-$  and  $CH_4$  to generate  $C_2H_4$  and side-products under OCM condition, and also provide evidence which indicates that

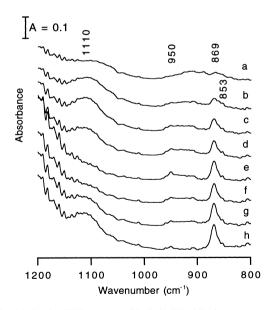



Fig. 14. In situ FTIR spectra of BaF<sub>2</sub>/5.67LaOF after exposure to definite amount of  $CH_4/O_2=3.4$  inside a close sample cell at  $800^{\circ}C$  for (a) 0.5, (b) 1, (c) 3, (d) 5 and (e) 10 min followed by switching to a flow of  $CH_4O_2=3.4$  (15 ml/min) at same temperature for (f) 1, (g) 7 and (h) 12 min.

O<sub>2</sub><sup>-</sup> is the active oxygen species or one of the active oxygen species for the OCM reaction over the non-reducible fluoride-containing rare earth-based catalysts such as AEF/REO, AEF/REOF and REOF.

For the catalyst containing rare earth cation with variable valence such as 4BaF<sub>2</sub>/CeO<sub>2</sub>, the results of in situ confocal microprobe Raman spectroscopic experiment performed at 750°C show that when an O<sub>2</sub> pre-adsorbed 4BaF<sub>2</sub>/CeO<sub>2</sub> catalyst was heated in a flow of CH<sub>4</sub> at 750°C, the Raman peaks of O<sub>2</sub><sup>-</sup> (at 1165 cm<sup>-1</sup>) and surface lattice oxygen (at 238 and 451 cm<sup>-1</sup>) species gradually decreased with time in intensities and almost disappeared after ca. 5 and 40 min, respectively (Fig. 15). At 650°C, after switching the CH<sub>4</sub>/O<sub>2</sub> (3.4/1) mixture to the above sample which had been adsorbed with O<sub>2</sub> followed by reacting with pure CH<sub>4</sub>, the Raman bands of surface lattice oxygen species (at 233 and 449  $\mathrm{cm}^{-1}$ ) and  $\mathrm{O}_2^-$  (at 1153 cm<sup>-1</sup>) reappeared (Fig. 16). When the temperature was increased to 750°C, the Ce-O lattice vibration peak at 449 cm<sup>-1</sup> was found to decrease slightly, while the other two peaks remained almost unchanged. These observations suggested that both superoxide and lattice oxygen species may be the active oxygen species for the OCM reaction over BaF<sub>2</sub>/CeO<sub>2</sub> catalyst system.

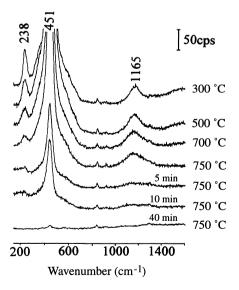



Fig. 15. Microprobe Raman spectra of O<sub>2</sub>-pretreated 4BaF<sub>2</sub>/CeO<sub>2</sub> catalyst at the indicated temperature under CH<sub>4</sub> atmosphere (adapted from Ref. [86]).

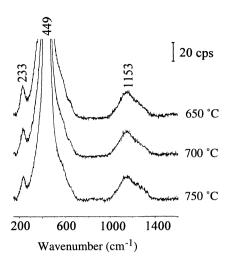



Fig. 16. Microprobe Raman spectra of  $4BaF_2/CeO_2$  catalyst at the indicated temperature under  $CH_4/O_2=3.4$  atmosphere (reprinted with permission from Ref. [86]).

On some catalysts, e.g. 4BaF<sub>2</sub>/CeO<sub>2</sub> (Fig. 11), besides the bands related to the Ce-O lattice vibration of CeO2, the Raman bands of the dioxygen species such as  $O_2^{2-}$  (or some sort of the precursor of oxygen species [89]),  $O_2^{n-}$  (1<n<2) or surface carbonate,  $O_2^-$ ,  $O_2^{\delta-}$  (0< $\delta$ <1) and adsorbed  $O_2$  were clearly observed on the surface of O<sub>2</sub>-treated sample at room temperature. As the temperature was increased, the Raman peaks of the surface dioxygen species decreased in intensity. At temperatures above 300°C, only the bands of Ce-O lattice vibrations and O<sub>2</sub> species were detected. A possible reason for the disappearance of "O<sub>2</sub><sup>2</sup>" at high temperatures may have resulted from the dissociation of the precursor as mentioned above, because the peroxide species should be more stable than the superoxide species on the REO-AEO-based catalysts.

#### 6. Conclusions

The addition of fluoride such as AEF to the REO (REOF)-based catalyst can significantly improved the catalytic performance for OCM and ODE reactions. The alkali-promoted fluoride-containing REO-based catalysts also demonstrated good catalytic performance for the reactions of ODP and ODIB.

XRD analysis of the fluoride-containing catalysts indicate that partially anionic  $(O^{2-}/F^{-})$  exchange

between the oxide and the fluoride phases took place in the catalysts, leading to the formation of anionic vacancies and new oxyfluoride phase with defective fluorite structures in the catalyst, promoting the adsorption and activation of oxygen as a result. The improvement in selectivity of a fluoride-promoted catalyst can be attributed to the isolation of active oxygen species by fluoride and to the formation of oxygen species in the form of deficiency in electrons over the fluoride modified catalyst.

An AEF promoted REO catalyst system is less basic than the corresponding AEO promoted REO catalyst system and will therefore be favorable to prevent the CO<sub>2</sub> poisoning. For the OCM reaction, there is no simple correlation between catalytic performance and the acidity/basicity of the catalyst.

In the experiments of in situ spectroscopic characterization of the OCM reaction at the temperature from 650°C to 800°C,  $O_2^-$  species were detected over at least five fluoride-containing alkaline earth and/or REO-based OCM catalysts, and the reactions between  $O_2^-$  species and CH<sub>4</sub> to form  $C_2$ H<sub>4</sub> and the corresponding side-products were observed over four catalysts. These results suggest that  $O_2^-$  is the active oxygen species or one of the active species for the OCM reaction over the corresponding catalysts.

#### Acknowledgements

This work is supported by the National Natural Science Foundation of China, the Key Science and Technology Project and the Doctoral Foundation of Education Committee of China, the Natural Science Foundation of Fujian Province and a grant from SINOPEC. The authors sincerely thank Prof. Y.Y. Liao, Prof. Z.Q. Tian, Mr. X.G. Yan and Ms. P.F. Hong for their kindly help in the experiments and Prof. K.R. Tsai for his instructive suggestions and encouragement.

#### References

- [1] G.E. Keller, M.M. Bhasin, J. Catal. 73 (1982) 9.
- [2] F.P. Larkins, M.R. Nordin, Stud. Surf. Sci. Catal. (Methane Conversion) 36 (1988) 406.
- [3] J.A. Sofranko, J.J. Leonard, C.A. Jones, A.M. Gaffney, H.P. Withers, Catal. Today 3 (1988) 127.

- [4] X. Fang, S. Li, J. Gu, D. Yan, Fenzi Cuihua 6 (1992) 255.
- [5] Z. Yu, X. Yang, J.H. Lunsford, M.P. Rosynek, J. Catal. 154 (1995) 163.
- [6] W. Hinsen, W. Bytyn, M. Baerns, Proceedings of the Eighth International Congress on Catalysis, vol. 3, Verlag Chemie, Weinheim, 1984, p. 581.
- [7] J.P. Bartek, J.M. Hupp, J.F. Brazdil, R.K. Grasselli, Catal. Today 3 (1988) 117.
- [8] K. Asami, S. Hashimoto, K. Fujimoto, H. Tominaga, Ind. Eng. Chem. Res. 26 (1987) 1485.
- [9] K. Fujimoto, K. Omata, J. Yoshihara, Appl. Catal. 67 (1991) L21.
- [10] M.Y. Lo, S.K. Agarwal, G. Marcelin, J. Catal. 112 (1988) 168.
- [11] S.K. Agarwal, R.A. Migone, G. Marcelin, Appl. Catal. 53 (1989) 71.
- [12] D.J. Driscoll, M. Vilson, J.X. Wang, J.H. Lunsford, J. Am. Chem. Soc. 107 (1985) 58.
- [13] T. Ito, J.H. Lunsford, Nature 314 (1985) 721.
- [14] J.M. DeBoy, R.F. Hicks, J. Chem. Soc., Chem. Commun. (1988) 982.
- [15] S.J. Korf, J.A. Roos, N.A. de Bruijin, J.A. Van Ommen, J.R.H. Ross, Catal. Today 2 (1988) 535.
- [16] J.A.S.P. Carriro, G. Follmer, L. Lehmann, M. Baerns, in: M.J. Phillips, M. Ternan (Eds.), Proceedings of the Ninth International Congress on Catalysis, Calgary, 1988, vol. 2, Chem. Inst. Canada, 1988, p. 891.
- [17] K. Aika, T. Moriyama, N. Takasaki, E. Iwamatsu, J. Chem. Soc., Chem. Commun. (1986) 1210.
- [18] J.A.S.P. Carreriro, M. Baerns, React. Kinet. Catal. Lett. 35 (1987) 349.
- [19] T. Ito, T. Tashiro, T. Watanabe, K. Toi, I. Ikemoto, Chem. Lett. (1987) 1723.
- [20] J.X. Wang, J.H. Lunsford, J. Phys. Chem. 90 (1986) 5883.
- [21] E. Iwamatsu, T. Moriyama, N. Takasaki, K. Aika, J. Chem. Soc., Chem. Commun. (1987) 19.
- [22] E. Iwamatsu, T. Moriyama, N. Takasaki, K. Aika, J. Catal. 113 (1988) 25.
- [23] J.M. DeBoy, R.F. Hicks, Ind. Eng. Chem. Res. 27 (1988)
- [24] K. Otsuka, Q. Lin, M. Hatano, A. Morikawa, Chem. Lett. (1986) 467.
- [25] J. Barrault, M. Grosset, M.H. Aissa, M. Dion, M. Tournoux, Catal. Today 6 (1990) 535.
- [26] J.L. Dubois, C.J. Cameron, Chem. Lett. (1991) 1089.
- [27] V.R. Choudhary, S.T. Chaudhari, A.M. Rajput, V.H. Rane, Catal. Lett. 3 (1989) 85.
- [28] H. Mimoun, A. Robine, S. Bonnaudet, C.J. Cameron, Chem. Lett. (1989) 2185.
- [29] V.R. Choudhary, S.T. Chaudhari, A.M. Rajput, V.H. Rane, J. Chem. Soc., Chem. Commun. (1989) 605.
- [30] Y. Liu, G. Lin, H. Zhang, K.R. Tsai, Stud. Surf. Sci. Catal. (Natural Gas Conversion II) 81 (1994) 131.
- [31] Y. Liu, G. Lin, H. Zhang, J. Cai, H. Wan, K.R. Tsai, Preprints, 203rd ACS Meeting, Div. Fuel Chem. 37 (1992) 356.
- [32] E.M. Thorsteinson, T.P. Wilson, F.G. Young, P.H. Kasai, J. Catal. 52 (1978) 116.

- [33] A. Guerrero-Ruiz, I. Rodriguez-Ramos, J.L.G. Fierro, V. Soenen, J.M. Herrmann, J.C. Volta, Stud. Surf. Sci. Catal. (New Development in Selective Oxidation by Heterogeneous Catalysis) 72 (1992) 203.
- [34] K. Otsuka, K. Jinno, A. Morkawa, J. Chem. Soc., Chem. Commun. (1986) 586.
- [35] K. Otsuka, T. Komatsu, Chem. Lett. (1986) 1955.
- [36] K. Otsuka, M. Hatano, T. Komatsu, Catal. Today 4 (1989) 409
- [37] A.N. Shigapov, M.A. Novozhilova, S.N. Vereshchagin, A.G. Anshits, V.D. Sokolovskii, React. Kinet. Catal. Lett. 37 (1988) 397.
- [38] R. Burch, S. Chalker, P. Louder, D.A. Rice, G. Webb, Appl. Catal. 79 (1991) 265.
- [39] K. Fujimoto, S. Hashimoto, K.I. Asami, H. Tominaga, Chem. Lett. (1987) 2157.
- [40] B. Wharren, Catal. Today 13 (1992) 311.
- [41] D.I. Bradshaw, P.T. Coolen, R.W. Judd, C. Komodromos, Catal. Today 6 (1990) 427.
- [42] R.W. Judd, C. Komodromos, T.J. Reynolds, Catal. Today 13 (1992) 237.
- [43] T. Ohno, J.B. Moffat, Appl. Catal. A 93 (1993) 141.
- [44] S. Ahmed, J.B. Moffat, J. Catal. 121 (1990) 408.
- [45] S.J. Conway, J.H. Lunsford, J. Catal. 131 (1991) 513.
- [46] S.J. Conway, D.J. Wang, L.H. Lunsford, Appl. Catal. 79 (1991) L1.
- [47] J.H. Lunsford, P.G. Hinson, M.P. Rosynek, C. Shi, M. Xu, X. Yang, J. Catal. 147 (1994) 301.
- [48] J.H. Lunsford, Angew. Chem., Int. Ed. Engl. 34 (1995) 970.
- [49] D.J. Wang, M.P. Rosynek, J.H. Lunsford, J. Catal. 151 (1995) 155.
- [50] X.P. Zhou, W.D. Zhang, H.L. Wan, K.R. Tsai, Catal. Lett. 21 (1993) 113.
- [51] X.P. Zhou, S.Q. Zhou, W.D. Zhang, Z.S. Chao, W.Z. Weng, R.Q. Long, D.L. Tang, H.Y. Wang, S.J. Wang, J.X. Cai, H.L. Wan, K.R. Tsai, Preprints, 207th ACS Meeting, Div. Petro. Chem. Inc. 39 (1994) 222.
- [52] R.Q. Long, S.Q. Zhou, Y.P. Huang, W.Z. Weng, H.L. Wan, K.R. Tsai, Appl. Catal. A 133 (1995) 269.
- [53] R.Q. Long, Y.P. Huang, W.Z. Weng, H.L. Wan, K.R. Tsai, Catal. Today 30 (1996) 59.
- [54] X.P. Zhou, Z.S. Chao, W.Z. Weng, W.D. Zhang, S.J. Wang, H.L. Wan, K. Tsai, Catal. Lett. 29 (1994) 177.
- [55] Z.S. Chao, X.P. Zhou, H.L. Wan, K.R. Tsai, Appl. Catal. A 130 (1995) 127.
- [56] X.P. Zhou, Z.S. Chao, J.Z. Luo, H.L. Wan, K.R. Tsai, Appl. Catal. A 133 (1995) 263.
- [57] H.L. Wan, Z.S. Chao, W.Z. Weng, X.P. Zhou, J.X. Cai, K.R. Tsai, Catal. Today 30 (1996) 67.
- [58] X.P. Zhou, S.Q. Zhou, F.C. Xu, S.J. Wang, W.Z. Weng, H.L. Wan, K.R. Tsai, Chem. Res. Chin. Univ. 9 (1993) 269.
- [59] X.P. Zhou, S.Q. Zhou, S.J. Wang, J.X. Cai, W.Z. Weng, H.L. Wan, K.R. Tsai, Chem. Res. Chin. Univ. 9 (1993) 264.
- [60] R.Q. Long, J.Z. Luo, M.S. Chen, H.L. Wan, Appl. Catal. A 159 (1997) 171.
- [61] S.Q. Zhou, X.P. Zhou, H.L. Wan, K.R. Tsai, Catal. Lett. 20 (1993) 179.

- [62] Z.S. Chao, X.P. Zhou, S.J. Wang, F.C. Xu, H.L. Wan, K.R. Tsai, Chin. Chem. Lett. 5 (1994) 685.
- [63] W.D. Zhang, X.P. Zhou, D.L. Tang, H.L. Wan, K.R. Tsai, Catal. Lett. 23 (1994) 103.
- [64] A. Sher, R. Solomon, K. Lee, M.W. Muller, Phys. Rev. 144 (1966) 593.
- [65] B. Delmon, Stud. Surf. Sci. Catal. (Third World Congress on Oxidation Catalysis) 110 (1997) 43.
- [66] B. Delmon, P. Ruiz, S.R.G. Carrazán, S. Korili, M.A. Vicent Rodriguez, Z. Sobalik, Stud. Surf. Sci. Catal. (Catalysis in Petroleum Refining and Petrochemical Industries) 100 (1996)
- [67] X. Gao, P. Ruiz, Q. Xin, X. Guo, B. Delmon, J. Catal. 148 (1994) 56.
- [68] W.D. Zhang, D.L. Tang, X.P. Zhou, H.L. Wan, K.R. Tsai, J. Chem. Soc., Chem. Commun. (1994) 771.
- [69] Z.L. Zhang, X.E. Verykios, M. Baerns, Catal. Rev.-Sci. Eng. 36 (1994) 507.
- [70] K.A. Gschneidner, Jr., L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earth, vol. 3, Chapter 27, North-Holland, Amsterdam, 1979, p. 385.
- [71] Physical Chemistry Constants of Rare Earth, Department of Metals, Zhongshang University, Matallurgial Industry Press, Beijing, 1978, p. 51.
- [72] Y. Amenomiya, V.I. Birss, M. Goledzinowski, J. Galuszka, A.R. Sanger, Catal. Rev.-Sci. Eng. 32 (1990) 163.
- [73] A.M. Maitra, Appl. Catal. A 104 (1993) 11.
- [74] J.A.S.P. Carreiro, M. Baerns, J. Catal. 117 (1989) 258.
- [75] A.M. Maitra, I. Campbell, R.J. Tyler, Appl. Catal. A 85 (1992) 27.
- [76] V.D. Sokolovskii, S.M. Aliev, O.V. Buyevskaya, A.A. Davydov, Catal. Today 4 (1989) 293.
- [77] V.R. Choudhary, V.H. Rane, J. Catal. 130 (1991) 411.
- [78] J.H. Lunsford, Stud. Surf. Sci Catal. (Natural Gas Conversion II) 81 (1994) 1.
- [79] R.Q. Long, H.L. Wan, Appl. Catal. A 159 (1997) 45.
- [80] H. Yamashita, Y. Machida, A. Tomita, Appl. Catal. A 79 (1991) 203.
- [81] Y. Osada, S. Koike, T. Fukushima, S. Ogasawara, Appl. Catal. 59 (1990) 59.
- [82] Y.D. Liu, H.B. Zhang, G.D. Lin, Y.Y. Liao, K.R. Tsai, J. Chem. Soc., Chem. Commun. (1994) 1871.
- [83] R.Q. Long, S.Q. Zhou, Y.P. Huang, H.Y. Wang, H.L. Wan, K.R. Tsai, Chin. Chem. Lett. 6 (1995) 727.
- [84] Z.S. Chao, X.P. Zhou, H.L. Wan, K.R. Tsai, Chin. Chem. Lett. 6 (1995) 239.
- [85] R.Q. Long, H.L. Wan, H.L. Lai, K.R. Tsai, Gaodeng Xuexiao Huaxue Xuebao 16 (1995) 1796.
- [86] R.Q. Long, H.L. Wan, J. Chem. Soc., Faraday Trans. 93 (1997) 355.
- [87] W.Z. Weng, M.S. Chen, H.L. Wan, Y.Y. Liao, Catal. Lett. 53 (1998) 43.
- [88] A.A. Davydov, M.P. Komarova, V.P. Anufrienko, N.G. Maksimov, Kinet. Katal. 14 (1973) 1519.
- [89] Y.D. Liu, H.B. Zhang, G.D. Lin, K.R. Tsai, in: K.R. Tsai, S.Y. Peng (Eds.), Catalysis in C1 Chemistry, Chemical Industry Press, Beijing, 1995, p. 47.